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This paper establishes lower bounds for estimation in parametric statistical models in
which one wishes to estimate a real-valued parameter of interest in the presence of
nuisance parameters which are accruing in number in direct proportion to the number
of independent observations. The formal setting requires that the nuisance parameters
be independent observations from an unknown distribution. In this setting an infor-
mation measure analogous to the Fisher information is derived. It is then used to
generate lower bounds for the variance of unbiased estimators and also for the asymp-
totic variance of consistent asymptotically normal estimators. Under certain conditions,
consistent asymptotically normal estimators can be generated by maximizing factors
of the complete likelihood, even though the maximum likelihood estimator is incon-
sistent. These estimators can be fully efficient in the sense of meeting the lower bounds
despite their apparent wasteful use of the likelihood, as is demonstrated, in several
important examples, by the use of a natural sufficient condition.

i — 1. INTRODUGTION

S ~ One of the most important problems in statistics concerns estimation in the presence of nuisance

e g parameters. Consider an experiment in which there are two treatments to be compared for

= efficacy in a target population. If that population is heterogeneous, then there will be other var-

E o iables, both measured and not, that have a bearing on the outcome measure of the experiment.
v

The statistical analysis of the experiment starts with a plausible model. It is common practice for
the difference in treatment effects to be represented in the model by a single real-valued para-
meter and for the heterogeneity of the sampled population to be accounted for by other, nuisance,
parameters. Within the model the user of statistics then seeks an estimator of the treatment differ-
ence parameter that is best for that model under some reasonable optimality cr1ter10n, thereby
augmenting the persuasiveness of his results.

The discovery that the maximum likelihood estimator is, under one potent optimality criterion,
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a best possible estimator is a profound achievement of the classical ‘theory of statistics. Yet a
substantial problem can arise because the classical theory does not incorporate nuisance para-
meters in a substantial manner. In fact, it will be demonstrated that in some nuisance parameter
models the maximum likelihood estimator is very misleading. To remedy this situation this paper
establishes for the following large class of nuisance. parameter models an optimality theory -
analogous to the classical one and then demonstrates an optimal estimator for an important
subclass of these models.

Suppose that X, X,, ..., X,, is a set of independent random vanables w1th common range space
(%, &) such that for each ¢ X; has the parametric density f(-; 6, ¢;) with respcct to a o-finite
measure v on (%, &). The pair (6, ¢,) is assumed to be an element of a cross-product parameter
space 4 = @9, where 0 is an open set of R, the real numbers, and (@, %) is a measurable space.

Denote the measure on (22, &) induced by (Xi, ..., X)) as ﬁ (6, ¢,). This is a class of models
. : i=1 '

characterized by the number of parameters increasing to infinity with the sample size n. (Here-
after, when limits are not expressed on X and IT, they will be understood to be index ¢ from 1 to n.)

The general problem of this paper is that of estimating the parameter 0, called the parameter of
interest, in the presence of the unknown ¢-parameters, called the nuisance parameters. Neyman &
Scott (1948) established that the maximum hkehhood estimator (m.Le.) of the parameter 6
(which they called the structural parametcr) is liable to be inconsistent as n - 0. This is demon-
strated by their example (2), which follows.

For each i, i =1,...,n let X; = (X, ..., X;;) be a J-vector of mdcpexident and 1dent1cally
distributed (i.i.d.) normal random variables, with mean ¢; and variance 6. The maxnnum
likelihood estimate of @,

n 3 5y
0= 3 5 (Xy—X)*/(0])
t=14=1
is not consistent as n-> 00, whereas, in cbntrast the bias-t:orrected m.lLe.,
J(J 1)—10,,, - R ¢ 15 5 §)

is consistent as either - o0 or J - 0. Tlus model wﬂl be an 1llustrat1ve example for many of the
ideas in this paper and will be referred to as the one way analysis of variance (an.o.va.) model.

Neyman & Scott (1948) also demonstrated that, even in those nuisance parameter models in
which the maximum likelihood estimator is consistent, it can fail to have minimal asymptotlc
variance in the class of asymptotical normal estimates. (See their example (1); another example
is in §9.6 of the present paper.)

These results, of course, thereafter weakened the credibility of the m.l.e. in models with many
nuisance parameters. On the other hand, in models of the form (6, ¢)", where the number of
nuisance parameters does not increase with z, an elegant structure has been created that justifies
the use of maximum likelihood estimation in large samples by its minimal asymptotic variance;
this is discussed further in § 5.1. This paperisa prehmmary search for the correspondmg structure
in the II(6, ¢;) model.

Forexample, is S§ anoptimal estimator asn—>ooin the onewayan.o.va. model'-’ Itisconsistentfor
0 and asymptotically normal (henceforth denoted c.a.n.), with asymptotic variance 26%/(J —1).
Andersen (1970) derived a lower bound for the asymptotic variance of c.a.n. estimators
in the model I1(6, ¢,) which, when applied to the Neyman-Scott example, gives the lower bound

542


http://rsta.royalsocietypublishing.org/

y A\
l B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

V am ©

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

642 B. G. LINDSAY

of 262/ J. This suggests an efficiency for §2 of (J — 1) /J. The startling implication is that, although
S2is the standard estimator of variance for the one way an.o.va. model, there may be substantially
better estimators asymptotically.

In the following pages, S2 will be shown to be an asymptotically efficient estimator based on the
following arguments. First, it will be argued that, for efficiency considerations, the model
I1(6, $;) can sensibly be transformed into the mixture model of § 2. In § 3, an information measure
for the mixture model is created, use of which is justified by the lower bound theorems of §4 and
5. In §6 a class of estimators that are based on likelihood factorizations and are called partial
maximum likelihood estimators (p.m.l.es) are introduced; S2 falls into this class. After a dis-
cussion of the general c.a.n. properties of this class in § 7, a simple criterion for their full mixture
model efficiency is presented in § 8. The criterion is met by Sz. In §9, four other examples are dis-
cussed. One example with a history of controversy appears in § 9.5, the pairs of Bernoulli variables
with common log odds ratios. Another, in §9.6, demonstrates a p.m.l.e. that is not fully mixture
model efficient.

2. THE MIXTURE MODEL
2.1, The model

Suppose that {¢,, @,, ...} is a sequence of i.i.d. random variables from an unknown probability
measure @ on (@, #). Conditioned on the realized sequence {¢,, P, ..., ¢,}, the random variables
Xy, ..., X, are independent but are not identically distributed (unless ¢, = ¢, = ... = ¢,,). They
have the distribution I1(6, ¢,). Viewed unconditionally, however, they are i.i.d. random vari-
ables from the mixture density,

f F(x:6,8)dQ (8): = £(%:0,Q).

(Thesymbol : = here means ‘is defined to be equal to’.) The corresponding measure on (2™, &/™)
will be denoted by (6, @)™. Let 2 be the family of all probability measures on (D, %).

Henceforth it is assumed that %, the o-algebra of @, contains all one-element sets {¢}. Let §(¢)
be the probability measure that puts mass one at {¢}. If

A*:={(0,Q):0€0,Qe 2}

(hereafter called the mixture parameter space), then the parameter space 4 can be embedded in A *
by (6, ) — (6, 8(¢)). The parameter point (6,8(¢)) will be called a fixed point, there being no
randomness in the choice of ¢.

2.2. Rationales for mixture model analysis

The mixture model (6, @)™ of § 2.1 may indeed be the model initially postulated, in which case
no rationale for interest in mixture model efficiency is needed. On the other hand, there may be
some other structure on the nuisance parameters. For example, in the one way an.o.va. model the
treatment groups may have been fixed in advance. For this problem, then, an i.i.d. specification
for the ¢’s would seem quite incorrect. However, there are several reasons for the mixture model
remaining a more relevant place than II(6, ¢;) to measure information.

The first reason comes from the perspective of a fixed sample size. The information measure
created for the mixture space A* in §3 is used in §4 to give a lower bound for the variance for
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EFFICIENCY IN MIXTURE MODELS 643

unbiased estimates in I1(0, ¢;) for quite arbitrary sequences {¢,, ..., ¢,}. It is superior to the
Cramér—Rao lower bound, itself generated by the fixed sequence point of view.

Another reason comes from an asymptotic perspective. Consider the one-way an.o.va. with z
fixed treatment groups. For an asymptotic approximation to the finite sample problem that is
faithful to the idea that there are many nuisance parameters relative to observations, one needs an
asymptotic generating scheme for the remainder {@,, ,,, ...} of the null parameter. For that asymp-
totic model to be a reasonable approximation to the finite sample model, the tail of the sequence
must be similar in character to the initial part. If the treatment means {¢,, ¢,, ..., ¢,} do not
have an inherent pattern, then to assume that they are i.i.d. observations may be a reasonable
way to create an asymptotic approximation.

If the null ¢-sequence has some non-random pattern in its asymptotic generation, then it is
possible (see Lindsay 1978) to create lower boundsin I1(0, ¢;) that are again based on the mixture
model information measure. However, the non-i.i.d. structure of the observations makes the
results immensely more complicated and, it is now argued, those results can be misleading.

For example, suppose X; is a normal random variable with mean ¢ and variance ¢;. Then if
{ay, a,, ...} is a sequence of positive constants, the estimator

Tn = EaiXi/Zai (2.2.1)

is c.a.n. for 6 when a; = ¢;%, with minimal possible asymptotic variance in I1(6, ¢,). This esti-
mator does quite well for one particular null sequence, at the price of poor performance along
permuted versions of it.

The point is that using realized sequences for null points for lower bounds introduces asym-
metry into the problem. That is, (6, @)* provides a permutation symmetric distribution for
(X5 ..., X,), whereas TI(6, ¢;) does not. One result of this is that squared error loss in (6, Q)"
penalizes estimators that are not permutation symmetric functions of (X;, X,, ..., X,,), but such
estimators may be optimal in T1(6, ¢,) along some null sequences. However, such estimators can
only be locally optimal, as their average mean square error over all permuted versions of the null
sequence cannot be less than that of a permutation symmetric estimator.

The asymptotic variance of a c.a.n. estimator is not necessarily equal to its asymptotic mean
square error (although the former is a lower bound to the latter); indeed, the mean square error
can beinfinite, but the asymptotic variance not. However, Chernoff (1956) noted that if n¥(7,, — )
has a limiting distribution with second moment o2, then

lim lim #znE[min{T,—0)2 k2/n}] = o2
k—>o© n—>w
Since, for the mixture model, the expectation E is a mean over sequences, the following insights
can be gained about c.a.n. estimators.

Suppose that one evaluates an estimator by seeing if it has minimal asymptotic variance in
(6, @)™ among a class of c.a.n. estimators. Ifit is not optimal there, then one can be sure that in
II(0, ¢;) there are many sequences along which it is suboptimal, and there may be estimators
uniformly better there. On the other hand, if it is optimal in (60, @)™, it still may not be optimal
along all realized sequences (being beaten by estimators like (2.2.1)), but any estimator that is
superior to its along some sequences must be inferior along others. Thus, a conservative procedure,
if there is no a priori information about the sequence, is to use a permutation symmetric estimator
optimal in (6, Q)™.
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Another reason for interest in 4 * information is related to robustness. Suppose that one starts
not with a nuisance parameter model but with an 1.i.d. model of the form (0, ¢)*. The mixture
model (6, @)™ is then a means of generating a family of alternatives arbitrarily close to the original
model. Moreover, 6 is, typically, a well defined parameter in these models. These models are
typified by having a greater variability in the sample than is generated by the model (6, ¢)": the
variability in X is compounded by variability in ¢. An example of this is the normal mixture,
where X is a normal random variable with mean 6 and variance ¢. The normal mixtures family
includes the ¢ distributions and the Cauchy distributions.

Based on this argument, it is reasonable to ask how well an estimator can perform at a null
(0, )™ and still be well behaved for nearby distributions in (8, @)”. This is exactly the question
answered by the lower bound theorem of §§4 and 5 when they are evaluated at the null points

(0,8(4))-

3. MiNIMAL FISHER’S INFORMATION
3.1. Definitions and properties

For much of the ensuing discussion attention will be restricted to a null point Ay = (6, @,) € A*.
Hereafter E,, F,, and var, will denote the values of these operators under the null distribution.
Let ¢ > 0 and let @ be a function from [0, €] to 2 of the form 7—>@,. For @ = +1 or —1, let
A, = (Op+ar, Q,). A local family of alternatives to the null A is a set F (a, Q): = {A,:7€[0,¢] and
A, € A*} with the property that, if L, is the likelihood ratio f (X; A,) /f (X; A,), then L_ is well defined,
EJL]=1,and
varg[L,] >0 as 7->0% ‘ (3.1.1)

If L, satisfies, in addition, the Cramér type regularity conditions cited in appendix A, then
Z (@, Q) will be called a regular local family of alternatives to null A;,. Under the smoothness
conditions there exists a (left-hand) first derivative of L, at 7 = 0+ denoted L, and a Fisher’s

information
F (Ao, Q) = Ey[Lg)?,

which is just the Fisher’s information at 7 = 0+ of the smooth parametric family #(«, Q).
The minimal Fisher’s information from above is then defined to be

F+(0,1Qu) = inf{F(Ay| +1,Q): F(+1,Q) regular}. (3.1.2)

For #-, the minimal Fisher’s information from below, replace @ = +1 by @ = —1 in (3.1.2). The
minimal Fisher’s information is ¢ = min{ ¢+, #-}.

An antecedent to the above notion of computing information by considering the most difficult
(least informative) one-dimensional subfamilies through a null point can be found in Stein
(1956). One peculiarity of the formulation presented here is that the null point A, is a boundary
point of the local subfamily. This is done because in A* it is not generally true that £+ = ¢-
This is shown in appendix B with use of the one way an.o.va. example. Thus, this definition of
information yields more powerful results than requiring that the null point A, be in the interior
of the one-dimensional subfamily {A,}. The essential point here is that, even though the one-
dimensional subfamily % (a, @) can sometimes be extended analytically to 7 < 0, the densities so
generated may no longer come from A *,

Often, lower bound theorems require that the null point be in the interior of the parameter
space. This requirement is generally not essential, as will be seen in the lower bounds of §§ 4 and 5.
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3.2. Relation with Fisher’s information

Suppose that @ is an open subset of R. It is clear that a minimal Fisher’s information could be
defined as well for A4 = @® by considering one-dimensional subfamilies of A. Further, the
embedding property required in §2.2 ensures that the minimal Fisher’s information in 4 at
(09, Do), here denoted (0| ,), is larger than the A* information at (6, 8(g,)),

Fol0o|B) = F(6618(80))s (3.2.1)

since the one-dimensional subfamilies of 4 can be embedded in 4*.
What is #,? Suppose that a partitioned Fisher’s information matrix,

7 = ("%0 ‘%q&)’
Jo0 Loe
exists for density f(x; 6, ¢). The multivariate Cramér~Rao lower bound for unbiased estimates of
the differentiable function () is

var (T)) > [I(6) 0] (ﬁfjj’ ;f;j) [K(0) O] = (K(0))2L S0 — Fo I Sl .

This suggests, by analogy with the one-dimensional Cramér-Rao bound, that

Fo(00|90) = Sho—Jos P53 F0- (3.2.2)

This is true, this minimal information, in fact, being generated by the one parameter family
A, = (Bg+7,Pg— I545 P9 7). (See Stein 1956.)

4. LOWER BOUNDS FOR UNBIASED ESTIMATION
4.1. Local versus global properties

Suppose that f(x; 0), 0 € @ < R, is a family of densities satisfying the usual regularity conditions,
with Fisher’s information _#(0). Pick a null point 6,. Then the Cramér-Rao lower bound for the
variance of unbiased estimators 7 of 6,

varg (T') > S7(0,),

can be derived with use of only the weaker requirement on 7 that it be unbiased for 6 on some
arbitrarily small interval containing 6, (‘locally unbiased’). As such, there exist superior lower
bounds for globally unbiased estimators (Barankin 1949). It is important to note, though, that
it is the information .#, derived from purely local properties of the likelihood, that provides a
tight asymptotic lower bound.

The information measure _# of § 3.1 similarly measures local properties of the likelihood in the
mixture model. As such, lower bounds based on it will make assumptions about the local be-
haviour of the estimators, where the following is meant by local: A property, such as unbiasedness,
which holds for 7 sufficiently small in each and every local family of alternatives to A, will be
called a local property at A,. This definition retains from the one parameter model the intuitive
notion that local likelihoods are those which are most difficult to dlstlngulsh from the null (see
-equation (3.1.1)).


http://rsta.royalsocietypublishing.org/

V‘J \
I~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y am

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

646 B. G. LINDSAY

4.2. Lower bounds

The purpose of this section is to establish that the _#-information of A* provides a measure of
interest in finite samples from models of the form II(0, ¢,), even when the sequence ¢,, ..., ¢, is
quite arbitrary. Before showing this, in corollary C, the following preparation is necessary. Let
(¢15 ---» $,) be an observation from a product measure @, x ... x ,, with each @;€ 2. Now the

model for (X, ..., X,) is ﬁ (0, @;) rather than (0, @)™. In this case, one dimensional subfamilies
i=1

are of the form I1(0 +ar, @;,). Let ;¢ be the upper (lower) minimal Fisher’s information for
this space, #1¢ thus being the measure for the original 4*.

Lowsia A. F1O00]Quox - % uo) = A0 Q)

Remark. The proofis in appendix C.
Tueorem B. If T'is a locally unbiased estimator in I1(6, @;) of a differentiable function /£(0) at

null I1(6y, @), then
vary (T') 2 [#(60)1%/ 7 (00| @ro % --. X Qno)-

Remark. The proof, a simple application of the Cauchy-Schwarz inequality, is found in appen-
dix C. Lemma A provides a simplified means of computation of the bound.

Cororrary C. If T is a globally unbiased estimator of £(6) in II(6, ¢;), then at null point

003 %0/
1 fu vary (T') > [£'(00)1%/ Fu(06]0($10) X --. X 8(Pno))-

Remark. The proof, found in appendix C, consists of showing that 7"is also locally unbiased in
I1(0, @;) at the null I1(6, #(¢;)). Theorem B then applies. This result will be used to show that S2
is the minimum variance unbiased estimate of the variance 6 in the one way an.o.va. model. This
result can be obtained by other means, but the form of the result ensures that functions 4(6),
which can be more efficiently estimated than 6 itself, do not exist. Notice that (3.2.1) ensures that
the bound is superior to the Cramér—Rao lower bound.

5. LOWER BOUNDS FOR C.A.N. ESTIMATORS
5.1. A review of asymptotic efficiency

Before a lower bound for c.a.n. estimates is established, a brief review of the structure of such
bounds is offered. For the purposes of this review, the variables X, ..., X,, are presumed to be
i.i.d. observations from a density f(¥; 0) that satisfies the usual regularity conditions in 6, a real-
valued parameter, and has Fisher’s information .#.

Fisher (1925) proposed that the inverse of the Fisher’s information was a lower bound to the
asymptotic variance of consistent asymptotically normal estimators. The maximum likelihood
estimators met that bound and so appeared supreme. However, by constructing ‘superefficient’
estimators, Hodges (see Le Cam 1953) revealed that there can be no lower bound, other than
zero, to that asymptotic variance. Are superefficient estimators then preferable to the m.l.e.?
The following results suggest that they are not.

First, any globally c.a.n. estimator {7},} of 6 must have asymptotic variance at least as large as
1 for almost all § with respect to Lebesque measure (Le Cam 1953; also Bahadur 1964). For a
smooth family, .#(0) is continuous in 6, so that, if {T},} has a continuous asymptotic variance, it
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can nowhere go beneath the lower bound. The continuity of the variance of an estimator is of
undoubted utility if that variance is to be estimated.

A second result is that #—! is a global lower bound for the asymptotic variance of estimators
that are uniformly approaching normality on compact subsets of ® (Rao 1963). The uniform
approach to normality is essential if one wishes to use the asymptotic distribution for confidence
intervals; see Wolfowitz (1965) and Roussas (1972) for stronger results of the same type.

Lastly, Le Cam (1953) has shown that superefficiency at one point entails bad risk values
(asymptotically) in a vicinity of that point. From this work, as extended by Hajek (1972), it is
clear that, under regularity, the maximum likelihood estimator minimizes the asymptotic local
maximum risk.

Each of these results provides a different insight into the problem of optimal estimation. Yet a
different approach will be used here, creating a result that looks much like an asymptotic version
of the Cramér-Rao lower bound for locally unbiased estimates. To do so, the asymptotic version
of ‘locally unbiased’ is developed.

5.2. Local properties of estimators

Let #°(-) denote the standardized normal distribution function. If {T},} is an estimator of ¢
such that for every local family {2,} of alternatives to A, there exists an interval I = [0,7,] and a
function o (7), the asymptotic variance, such that for all yeR

sup {|P[(T, = (6 +ar))/o(r) <3 4] = (y)[}>0 as n—>co, (5.2.1)

then {T’,} will be called locally uniformly asymptotically normal (lu.a.n.). It will be called locally
uniformly asymptotically median unbiased (1.u.a.m.u.) if (5.2.1) holds aty = 0, in which case it may be

rewritten, for 6, = 0,+ a7, as
sup{|P[T, < 0,;A,]—}[}>0. .
Tel

If an estimator {T’,} fails to be l.u.a.n., then the asymptotic distribution is no longer guaranteed
to be a reasonable approximation for any large fixed sample size to the distribution of that
estimator in any arbitrarily small local neighbourhood of the null. For such an estimator it is not
clear that asymptotic variance is a reasonable measure of optimality. Moreover, the use of the
asymptotic distribution for confidence intervals is impossible. Although the l.u.a.n. property is
more obviously desirable, the weaker requirement of l.u.a.m.u. suffices for the lower bound
result.

5.3. The lower bound theorem
Once again, the Xj, ..., X,, are i.i.d. observations from (6, @).

THEOREM. If {T}} is c.a.n.-l.u.a.m.u. for @ at null A, = (6,, Q;), with asymptotic variance o2,

then
03 > F7Y0o|Qp)-

Remark. The proof'is to be found in appendix D. It is a straightforward adaptation of results of
Bahadur (1964) to the one-sided informations used herein. The results of Bahadur apply to more
general sampling frameworks than i.i.d. sampling (see his §4). Thus, this result could be extended
to models in which the denxities f; for X; depend on 7 in some known fashion. This would clearly
require modification of the notion of local property.

55 Vol. 2¢6. A
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6. LIKELIHOOD FACTORS
6.1. Definition and properties

Suppose that the random vector X, = (X, ..., X)) has a distribution ¥ (- ; A) which depends on
A in parameter space /. (For the moment, A is arbitrary and the existence of a density is not
required.) The function g(X; A) will be called a likelihood factor if for each A and A, the g-likelihood

ratio
. L,:= (4 A) =g(X;2)/8(X; A)
is well defined and
Ej[L,]=1. (6.1.1)

The last equation, highly useful in establishing a score theory for likelihood factors, will be called
the factor equation.

The work “factor’ is used because, if X, has density f and likelihood factor p, then r = f/p, if
well defined, is also a likelihood factor. Hence f = pr is a factorization of finto two likelihood
factors.

It is evident that marginal densities provide examples of likelihood factors. A simple check
shows that if 7"and C are statistics such that 7" has a conditional density g(¢|c; A) for each fixed
C = ¢, then g is a likelihood factor. It is true, however, that there may exist likelihood factors that
are neither marginal nor conditional densities. In particular, suppose that X, has a density
factorization of the form:

£ ) = files ) TLfixl 125 ):

Here, f;(x;| #;_41; A) represents the conditional density of X, given that X;_;:= (X;, ..., X; ;).
Cox (1975) suggested that asymptotic inference (as £ — c0) could be based on subproducts of the
f; terms, chosen for their simple structure. Such a subproduct, termed by him a partial likelihood,
is an example of a likelihood factor.

6.2. Partial likelihood factorization

Attention is now focused on the following problem. If f(X; 6, ¢,) is the density for observation
X,, does there exist a non-trivial likelihood factorization of the form

J (x50, ¢;) = p(x;0)7(x;0,¢,)?

Notice that the factor p, hereafter called the partial likelihood, after Cox (1975), does not depend
functionally on ¢. The factor r will be called the remainder likelihood.

The existence of such partial likelihood factorizations is of key importance to the nuisance
parameter problem because, as will be seen in §7, it can provide a means of obtaining c.a.n. esti-
mators in those models in which the m.l.e. fails, to wit, by maximization of

o b5

p(Xi; 0).

t=1

[]

There does not appear to be a single direct method of finding such a factorization. Two methods
of major importance will be briefly reviewed here. These can be viewed as the likelihood factor-
izations implied by certain hypothesis testing procedures.
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6.3. Conditional factors

One possible approach is to use the conditioning techniques of the theory of unbiased testing
(Lehmann 1959, ch. 4). Suppose that for each fixed 6 there exists a minimal sufficient statistic C
for the parameter ¢, where C is not functionally dependent on 6. If the pair (7, C) is sufficient for
the pair (6, ¢), then the conditional distribution of T'|C does not depend on ¢. If the densities
exist, a factorization of their joint density f,

S(te;2) = p(t)e; 0) 7(c5 2),
will be possible.

This sort of factorization (and the asymptotic inference for it) is extensively treated by
Andersen (1973). The one way an.o.va. model of §1 provides a demonstration of its use. The
statistic C; = X; is sufficient for the mean ¢, when @ is fixed. The statistic

J -
T,= % (X,- K"

together with C;, forms a pair of statistics sufficient for (0, ¢;). The factorization is

f(t, ¢; 0, ¢'t) = p(t’ 0) 7’(0; 0, ¢z),
where 7 is the marginal density of X; and, because of independence,  is the marginal density of
T;. In §§9.3 and 9.5 two further examples of this type of factorization are provided.

6.4. Maximal invariants

The second approach to factorization corresponds to the theory of invariant testing (Lehmann
1959, ch. 6). One examines the problem for a group of transformations & that act on the sample
space in such a fashion that

(1) If X has density f(-; A), then for each ge %, gX has density f(-;g*A) for some g*Ae 4.

(2) The orbits of A induced by ¥*: = {g*: g %} correspond to the values of §. (The orbits are
equivalence classes of elements that can be carried into one another by *.)

If the orbits of the sample space under ¢ correspond to a statistic 7, that statistic is called a
maximal invariant. Its distribution depends on 6 alone. If (7, C) are sufficient for (0, ¢,), then the
factorization Fltye; A) = p(50) r(e|5 )
is possible if the densities exist.

In the one way an.o.va. model, the statistic 7" defined in (6.3.1) is a maximal invariant under
the group oflocation transformations. The factorization (6.3.2) is thus also induced by invariance.
Other examples of maximal invariant factorizations appear in §§9.3, 9.4 and 9.6.

6.5. Information and likelihood factorizations

A principal feature of this paper is that the informativeness of a conditioning or invariant
procedure can be judged purely on the single principle of mixture model efficiency. There is an
extensive literature dealing with the desirability and optimality of conditioning on ‘ancillary’
statistics or using ‘marginally sufficient’ (by invariance) statistics (see, for example, Basu 1977;
Sprott 1975; Barndorff-Nielsen 1973). The approach herein is held advantageous because it
provides an answer to the question, ‘Can one find an appreciably more powerful procedure by
relaxing similarity or invariance requirements?’ Of the five examples of this paper (§9), four have
fully efficient partial likelihoods and one has an inefficient invariant partial likelihood.

55-2
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7. PARTIAL MAXIMUM LIKELIHOOD ESTIMATORS (P.M.L.E.)
7.1. Preliminary remarks

If TIp(X,; 0) has a unique maximum at 8, as a function of 6, 8, will be called the partial maximum
likelihood estimator (p.m.l.e). If p is a marginal density for statistic 7, then the p.m.Le. is just the
maximum likelihood estimator for the i.i.d. sample 773,...,7T,,. Hence, under regularity, the
usual properties of maximum likelihood estimators hold. Andersen (1973) has shown that, if pis a
conditional likelihood, then the resulting p.m.le. (which he called the conditional maximum
likelihood estimator) has (under regularity) the desired properties of consistency and asymptotic
normality, provided that the null sequence of nuisance parameters is either an i.i.d. sample from
a distribution @ or drawn from a compact set ®.

Because of these previous treatments, the thrust of this section is restricted to demonstrating the
role of the factor equation (6.1.1) in obtaining asymptotic results.

7.2. Regularity assumptions

Fix null A, = (64, @), let L,(0): = p(X;0)/p(X; 6,), and let [,(X;60):=Inp(X;0). For the
purposes of deriving an asymptotic theory, the following assumptions concerning L,, are made.
Let dashes denote derivatives with respect to 6. The assumptions are stated in a form that makes
explicit their relation with the factor equation (6.1.1).

AssumpTION A. The ratio L, (6) is twice differentiable in 6.
AssumpTiON B. E([],( X; 6)] < oo for 6 in a neighbourhood of 6.

AssumpTiOoN C. For all 6 in a neighbourhood of §,,
B[L,(6) = 1] < 1.

AssumpTION D. For 6, in a neighbourhood of 6,, the following reversal of integral and limit
takes place.

0= lim EO&%—%@ — E,[LL(0))].

606y

An implication of this assumption is that E[/;( X;6,)] = 0.

AssumpTION E. A second order reversal of integral and limit holds:

0= tim 52020 _ g ps0y)
01—)00 1— 0

An implication of this assumption is that — Ey[/,( X;0)] = E[1,( X; 0)]2
AssumpTiON F. There exists a random variable A ( X) such that
l(X;0)| < M(X)

or all 6 in some neighbourhood of 6, with E,[ M (X )] < oo.
The function E[/,(X; 0,)]% = 4,(A,) will be called the partial Fisher’s information.
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7.3. Asymptotic properties
LemMA. Suppose that for each n, X /,,(X;; 0) has, almost surely, A,, a unique maximum 6,asa
function of 8. Under assumptions 4, B, and C of§17.2, 8, —~ 6,, almost surely, A,.

Remark. The factor equation, assumption C, and Jensen’s inequality lead to the conclusion that
Eq[1,(X;0) ~1,(X;6,)] < 0 (7.3.1)

for 6 in a neighbourhood of @, The rest of the proof is standard and so is incorporated into
appendix E.

Suppose © > #,(6,, Q) > 0. If the p.m.Le. is consistent, then it is clear from the assumptions
D, E and F that a Taylor’s expansion of 2, (X;; ) about 6, will show that 8, is asymptotically
normal, with asymptotic variance J;(6,, @,). (See, for example, Andersen 1973.) Several
additional regularity assumptions guarantee that 4, will be locally uniformly asymptotically
median unbiased. The details are in appendix F.

The p.m.l.e. for 6 in the one way an.o.va., for the factorization suggested in §§ 6.3 and 6.4, is 3.
It is clearly c.a.n. and L.u.a.n.

8. EFFICIENCY AND UNIQUENESS OF THE P.M.L.E.
8.1. Locally fully informative factor
An important criterion for the full asymptotic efficiency of the p.m.l.e. in the mixture model is
now presented. A likelihood factor p(X; 0) will be called locally fully informative (1.£1.) at A, =

(09, Qo) in A* if there exists a local family of alternatives % (a, @) such that the remainder r = f/p
satisfies

f r(X; 0+ a7, $) dQ,(4) = f r(X; 80, 8) dQo(4), (8.1.1)

almost surely (A,). (Notice that the parameter 7 is locally unidentifiable based on the factor r.)
Upperand lowerl £.i. willmean that (8.1.1) holdsfor & = + 1anda = — 1, respectively. The measure
Q, will be called the remainder eliminating distribution because, for thislocal family, L, = L,(6,+ar).

The following lemma simplifies the determination of 1.f.i. The fixed points are, in a sense, the
most difficult.

Lemuma. If p is upper (lower) L. at all fixed points Ay = (0,, 8(¢,)), then it is upper (lower)
L£i. at all points (6, @,).

Proof. If the measure Q,(-|y) is a remainder eliminating distribution for null (6, ), define
measure QF by

f ,4er(9) = f ,49,(819) dQu(y)-

This measure satisfies
f r(X; 0+, ) AQE($) = f f r(X; 0 +ar, 8) dQ,($ly) dQu(y)

- f r(X; 00, 9) dQo(y),

as required.
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As an example consider the factorization (6.3.2) for the one way an.o.va. problem. It is
claimed that p is lower 1.fi. Here, r is a normal density with mean ¢ and variance 6/J. Let
Ao = (Op, () be a fixed point of A*. Let @, be the normal distribution with mean ¢, and
variance 7/J. Then

f r(X;00—7,8) dQ,(8) = r(X; 00, o)

because the left hand side is the convolution of two normal densities with respective means 0 and
¢, and respective variances (6,—7)/J and 7/J.

8.2. Efficiency

Suppose now that for a given density with Lfi. partial likelihood p, the p.m.le. is c.a.n.-
L.u.a.m.u. with asymptotic variance .#;*. If the family & (a,Q) defined by the remainder
eliminating distributions is regular (where now L, = L, (0 + a7) and the regularity conditions of
appendix A are quite similar to those of § 7.2), then the minimal chacter of _# implies ¢ < %,. On
the other hand, the lower bound theorem of § 5.3 gives the reverse inequality, so ¢ = 4,. Hence
the p.m.l.e. has minimal asymptotic variance. In particular, the estimator S of the one way
an.o.va. is fully mixture model efficient.

8.3. Uniqueness

If it were possible for there to be two Lf.i. partial likelihoods, then considerations of efficiency
would not enable one to choose between them. The following lemma, again based on the factor
equation, shows uniqueness of the likelihood ratios.

Lemma. If p is a 1.f1i. partial likelihood, then any other partial likelihood p* satisfies
Ey[InL,(0y+a71)] < Ey[In L, (04+ar)]
with equality only if
L,(0y+at) = L, (0,+ar),
almost surely (A,).
Proof. Because f = pr and f = p*r*,

Lp (00 + 0”) Lr(eo +ar, Q—,-) = Lp‘ (60 + “7) Lr"' (00 t+oar, QT) ’

where @, is the remainder eliminating distribution for partial p. Recalling that L.(0, + a7; Q,) = 1,
almost surely (A,), taking logarithms gives

InL,(0y+ar) —In L, (0y+at) = InL.(0,+ar,Q,).

Since 7 * is a likelihood factor, the conclusion of the lemma follows by Jensen’s inequality and the
factor equation.

8.4. Hypothesis testing

Finally, the relation between the 1.fi. property and uniformly most powerful tests should be
mentioned. Following Lehmann (1959, §3.8), let the null hypothesis be H:60 = 0, +ar, ¢ un-
specified, and let the alternative be K: 0 = 6,, ¢ ~ Q,. For each mixing distribution @,, one can
form the most powerful size & test of Hy: 0 = 6, +ar, ¢ ~ @ against K it is based on the likeli-
hood ratio. If one minimizes the power of the test over @, one finds a least favourable distribution
Q. (see Lehmann (1952) for existence) for which the ratio L, generates the most powerful size a
test of H against K. If the partial likelihood is 1.f.i., then the remainder eliminating distributions
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are least favourable in terms of minimizing information and so are, at least, approximately least
favourable in the Lehmann sense. Hence, the most powerful test of H—: 6 < 6, (fora = —1) or
H+:0 > 0, (for « = +1) against K—:0 > 6, or K+:0 < 0, is generated, approximately, by the
p.m.Le. For example, in the one way an.o.va., S» generates the most powerful test of H: 0 < 6,
against K: 60 > 6, (see Lehmann 1959, §3.9.)

9. THE EXAMPLES
9.1. Preliminary remarks

The emphasis in this section is upon showing that the locally fully informative criterion can be
a useful tool. The demonstration of this property in any particular factorization is not necessarily
elementary, but, once done, corollary C of §4.2 and the theorem of § 5.3 show that the partial
likelihood is a sufficient source of information. The last example demonstrates that not all
partial factorizations have this property.

9.2. One way an.o.va.

In §6.3 and 6.4 it was demonstrated that the density of the pair (77, C;) couldbe factored into a
partial likelihood (the marginal density of 7;) multiplified by a remainder likelihood (the mar-
ginal density of C;) It was pointed outin § 7.4 that S} is the p.m.l.e. and so, because of regularity, is
c.a.n.-lL.u.a.m.u. In §8.2 it was shown that p is locally fully informative. The conclusion is that

F(6:lQ) = £0:1Q) = T

and that $2 is fully mixture efficient. Moreover, from corollary C. of §4.2, S2 is not only the mini-
mum variance unbiased estimator, but also the most efficient unbiased estimator.

9.3. Exponentials with unknown support
Suppose that . )
Xy=0Y;+¢, (i=1,2,..,nj=12..,J),
where the ¥;; are independent unit exponentials. In this model, the support of the density changes
with ¢,. Let Xy, ..., Xy be the order statistics for X;), ..., X;;. The random variables X; can be
transformed to :
Zy = J Xy,
Zy = (J—k+1) (X — Xig-p) (K =2,3,...,J).

Then {Z;, — J¢;, Z;,, ..., Z;;} are distributed as i.i.d. exponentials with mean 6 (see, for example,
Johnson & Kotz 1970). In this transformed space it is easily seen that, since the m.l.e. of J¢; is

Z;,, the m.Le. of 0 is
0:-1% 57
n nd 15 N
The m.l.e. is thus inconsistent, converging to [(J—1)/J]6.
On the other hand (since Z;, is clearly minimal sufficient for ¢,) the conditioning argument of
§6.3 leads to the marginal density of Z;,, ..., Z;; as a partial likelihood. The same conclusion
follows from using location transformations on the original X;; variables and an invariance

factorization. The remainder likelihood is the density of Z;,.
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It is now demonstrated that the partial likelihood is locally fully informative. Fix null Ap =
(65, 8(0))- First note that the requirement £[L,] = 1 on thelocal family of alternatives % (e, @)
implies that @ must have mass one on [¢, c0). For fixed i, let ¥ : = Z;, and ¢ : = J¢b;,. Let Whe a

&
unit exponential variable. If = denotes equality of probability distribution, then, under the null,

&
Y = 00 W+¢0‘

Under an alternative (6, @), where @ puts mass 1 on [@,, o),

K4
Y= O0W+U,

where U is a random variable with distribution @, independent of W. If Q is to be remainder
eliminating, then
e
OW+V=20,W, (9.3.1)
where V = U— ¢, a non-negative random variable. It is now shown that such a non-negative ¥

exists for 0 = 6,—7 > 0.
Setting Laplace transforms equal in (9.3.1), one obtains

E[e7] = E[e~0t]/E[e=07"]
= (14+6¢)/(1+6,¢)
_q + ( 1 g.) _1._.
6, T G,) 146,
Provided that 0 < 6 < 6y, this is the Laplace transform of a random variable V, which is 0 with

probability 6/6, and exponential with mean parameter 6, with probability (1—6/6,).
The conclusion is that the p.m.Le.

0= (% 3 2)/tn7- 1)1

is a fully efficient unbiased estimator of § and asymptotically fully mixture space efficient.

9.4. Bernoulli pairs with invariant reversals

For each ¢ the pair (X;, Y;) are independent Bernoulli random variables with a common prob-
ability of success § + 6¢,, where ¢;is +1 or — 1 and #€[0, 1]. This model is an elementary version
of one arising in the study of evolutionary trees (see Felsenstein 1973).

The transformation (x,y) - (1—x, 1—y), together with the identity, form a group of trans-
formations as in §6.4. The orbits in the parameter space correspond to 6 and the orbits in the
sample space correspond to values of W, the indicator function for the set {X; + ¥; = 1}. The partial
likelihood so generated is then the marginal density of ;. (Only the trivial p = 1 is generated by
the conditional approach of §6.3.) The variables W}, ..., W, are independent Bernoullis with
mean 2(} — 62). :

By symmetry, it suffices to show that the partial likelihood is LEi. at null (6,, 1) for 6,e[0, 1].
For fixed 7, let § = X; +7;. Since (S, W) is sufficient for (6, ¢), it suffices to show that there exists a
remainder eliminating distribution @ on {—1, + 1} for the conditional density of S given W. Let

_ a0y
‘0= groEraoy
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The density of S given W is defined by

P[S=1|W=1] =1,

P[S = 0|W = 0] = a(0) if ¢=1,

P[S=0W=0]=1-4a(0) if ¢=-1,

P[S=1W=0]=0,

P[S=2|W=0]=1-a(0) if ¢=1,

P[S = 2|W = 0] = a(0) if ¢=—1.
It follows that the single equation that a remainder eliminating distribution @ must satisfy, if
Q1) =g, is

Solving for ¢ gives

qa(0) + (1 - g) (1 —a(0)) = a(6,).

g = [a(0) +a(0) — 1]/[2a(0) - 1].

Given any 6, and any 6, if the last equation gives a value of ¢ in [0, 1], then that value of ¢ defines
a remainder eliminating distribution @ by Q({1}) = ¢. Note first that a(f) > £ if 6 > 0, so ¢ is
positive. Secondly, the function a(¢) is monotonely increasing for 6 in [0, 4], so that a(6,) < a(0)
is implied by 6, < 6, which in turn implies that ¢ < 1. It follows that p is upper 1.fi. Hence
n~1ZW, is the (fully efficient) minimum variance unbiased estimator of 2(} —62) and also fully
mixture space efficient asymptotically.

9.5. Bernoulli pairs with common log odds ratio

Of substantial theoretical and practical interest is the model in which the ith observation is a
pair (X, Y;) of independent Bernoulli variables with respective success parameters defined by

pi = exp(0+¢;)/(1+exp (0+;))
q; = exp (¢;)/ (1 +exp (¢,))-

The parameter 6, here constant over ¢, is the log odds ratio for the Bernoulli pair.

The minimal sufficient statistic for ¢, when 6 is fixed, is X; + ¥}, so the argument of § 6.3 leads to
the use of the conditional distribution of X, given that X; + ¥; for inference about 6. There is no
invariant partial likelihood.

It will here be demonstrated that the conditional likelihood is a locally fully informative partial
likelihood, so that the p.m.Le. is fully mixture efficient. Previous discussions from different points
of view of this same model can be found in Barndorff-Nielsen (1973) and in Sprott (1975). Some
initial results on the mixture efficiency of the conditional likelihood when X and Y are binomials
can be found in Lindsay (1978).

The remainder likelihood is the marginal likelihood of X+ 7Y and is defined by the three
probabilities:

and

P[X+Y =0] =p(0,9) = (1 +e#)~1(1 +ef+¢)-1;
PX+Y = 1] = p(0, ) (1 +¢");
PX+Y = 2] = p(0, ) ¥+,

and

56 Vol. 2g6. A
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Hence a remainder eliminating distribution @ for the fixed point null (6, 6(¢,)) must satisfy the
following set of equations:

[ 7(6.8) d0(@) = p(60 80

[p(0.6) (1) dQ) = p(00, b0 et (1-+-e%); (9.5.1)

and [ 110, 8) e0s20aQ9) = p(60, 40 et

If we write dw(¢) = r(6,9) dQ(¢), these may be rewritten as
p(00> ¢0)

Jaot) =1,

f ehdoda(g) = (1+e%) /(1 +¢), (9.5.2)

and fez<¢‘¢o) dw(¢) = €209,

If a positive measure w exists satisfying (9.5.2), then a positive measure @ can be constructed
satisfying (9.5.1) by d@Q(¢) = p(0y, ¢o)/p(0, ) dw($). The measure @ so defined is positive
(because w is) and has mass one. (Add over the three equations in (9.5.1).)

If ¢ is a random variable with distribution w, then the equations (9.5.2) are moment equations
for the positive random variable Z = e#~%. Such a random variable Z exists if the mean (1 + e%) /
(1 + €% and the variance,

var (Z) = €200 — (1 4¢%)2/(1 +¢%)?
-tteeten [ 2] (5

are both positive. (The I" distribution, for one, can fit any specified positive mean and variance.)
They are positive if 6, > 6. Thus, the conditional likelihood is clearly lower locally fully
informative.

9.6. Paired exponentials with proportional hazards

The final example demonstrates that there is no assurance that invariance considerations lead
to a mixture efficient p.m.l.e. In this example there is a consistent asymptotically normal estimate
which is strictly superior in asymptotic variance to the p.m.l.e. over part of the mixture space.

For each i let the pair (X, Y;) be independent exponential random variables with a constant
hazards ratio 6. That is, the density for the pair is

f(%,9;0,9) = 0¢*exp[ — (Ox+y) ¢],

with positive valued parameters (6, ¢). The scale transformations (x,y) - (bx, by), b positive,
transform the parameter space by (6, ¢) - (6, 571¢), so the orbits correspond to 6. For these
transformations the random variable Z = X/Y is a maximal invariant. It has density

p(z;0) = (z60+1)~% (ze[0,0)).
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The information in this likelihood is
I5(01Q) = 1/(36%)
and so, because of regularity, the p.m.l.e. has asymptotic variance 362. (Aside: For this model itis
also true that the p.m.l.e. is the same as the m.l.e. for II(0, ¢,). Since the Fisher’s information for
the full likelihood is (262) 1, this is a further example (see §1.2) of m.l.es that are consistent but
not fully efficient.)
The maximum likelihood estimate for the fixed point model (6, ¢)* is
0% = 2v,/2X,.

If the null distribution is (6, Q)*, then §* is consistent for all measures Q such that f $1dQ < oo,

as
0%—~E,Y,/E,X, = 0,

Provided that f ¢~2dQ, < oo, this estimator is also asymptotically normal, as

nA2(Y; - 6X,)

nh(0% —0,) = — 5% %

Here the denominator converges almost surely to f (6, ¢) 1 dQ,, and the numerator converges in

law to a normal random variable with mean 0 and variance 2 f ¢—2dQ,. Hence
nk (0% — 00) > N (0, 203¢(Qu)),
-2
= M > 1.
([¢71dQ)®

Thus, for all Q, such that ¢(Q,) < %, the fixed point m.Le. §* is strictly superior to the p.m.lLe. in
asymptotic variance.

where

(@)

10, CONCLUDING DISCUSSION

This paper represents a preliminary exploration of the mixture space A* and its information
properties. The first conclusion is that partial likelihood techniques can provide fully mixture
efficient estimators, but not invariably so.

The secondary explorations needed for this topic include, first, establishment of better tech-
niques for computing the #-information and, secondly, development of estimators that uniformly
attain the lower bound of §5.3. In regard to the last point, it is possible that the m.l.e. for the
mixture space of the pair (0, @), defined and discussed by Kiefer & Wolfowitz (1956), may pro-
vide such efficient estimators of 6. Another approach deserving exploration is the impact of
various finite parameter representations of the mixture space upon overall mixture space con-
sistency and efficiency.

A final point is that because of the asymmetry of the mixture space the measures defined in this
paper apply only to scalar parameters. The extension to a multivariate parameter 6 awaits
further research.
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ArPENDIX A. REGULARITY CONDITIONS

For the family # (2, Q) and L, asin §3.1, let [, = In L, and let dashes denote derivatives with
respect to 7. The following regularity conditions (A 1-A 4) are adaptations of the regularity
conditions used by Bahadur (1964), which are themselves simplified versions of those of Cramér
(1946). Those regularity conditions are needed for the lower bound theorems in §§4.2 and 5.3.

(A 1) The first two derivatives of /, exist and are continuous on [0, €). Here /; and /g will mean
left-hand derivatives at 7 = 0.

(A 2) The following interchange of limit and integral takes place:
lim Ef[(L'y—L,)/(r' —7)] = Ey[L}] = 0, Vre[0,6).
This implies that E[[;] = 0.
(A 3) The following interchange of limit and integral takes place:

lim Eo[(L; —Lg) /7] = Eo[Lg] = 0.

This implies that Eg[ — 5] = E[lg]2:= #(Ay|et, Q). This last quantity is the Fisher’s infor-
mation at 7 = 0 for the one-dimensional subfamily.
(A 4) There exists a random variable M (X) such that
|ir] < M(X)
for all Te[0,¢), with E,[M(X)] < co.
Adding the second set of regularity conditions (A 5-A 7) proves useful in finding the least
favourable family % («, Q). (See appendix B and proofs for §4.2.)

(A 5) For7e[0,¢), Ej[ —1,] is finite and also twice differentiable in 7 at 7 = 0+, with

0 ,
E;Eo[‘“lr] a0t = Eo[lo] =0
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and
02 "
5“12Eo[“lf] r—ot o[ =] = F (A, Q).
(A 6) For7€[0,€], Ej[L,!,] is finite and also twice differentiable in 7 at 7 = 0+, with
a ’ ’
'5;.E0[Lr L] ot Eo[Lyls+Loly] = 0
and
az " 1 g 4
51_3E0[L¢ A ot Eo[Loly+2Lo 15+ Lolo)
= (Aol Q).
(A7) For7e[0,€), Ej[4L,]? is finite and also twice differentiable in 7 at 7 = 0+, with
0 ,
o $L7] r—o+ = E[LyLg] =0
and
az ” ’
5_7.2E0 [3L7] ot = Eo[Ly Lo+ (Lg)?] = F (o], Q).

AprPPENDIX B. AsYMMETRY OF MINIMAL FISHER’S INFORMATION

The one way an.o.va. example demonstrates this. From the argument of § 8.3, the lower mini-
mal Fisher’s information for this model is

F(01Q) = £4,(6]1Q) = (J-1)/26%.
It will here be shown that for any ¢,

FH0|8(¢)) = J/(26%),

giving the stated asymmetry.
First, some lemmas are given that reduce the minimal Fisher’s information problem to a
simpler form. For fixed a and 7, let

ff(X; 0, +ar,$) dQ

LT(Q) -
f F(X; 00, $) dQ,

Let @y,, @,,, and Q;, be the probability measures (if they exist) that respectively minimize
E\[-InL,(Q)], E[L,(@)In L,(Q)] and E[3L3(Q)]. (B 1)

If the regularity conditions (A 1) to (A 7) are satisfied by any one of the families % (o, @, ),
F(a,Q,), and F (a, Q;), then conditions (A 5) to (A 7), respectively, show that

f(eoiQo) = j(’\0|“> Q:)

for i = 1, 2, or 3. This said, it is clear that we wish to minimize the functions in (B 1) with respect
to Q. The following lemmas are an aid in this minimization.

Lemma 1. The probability measure @, minimizes £y[ —In Z,(@)] if and only if

E\[L,(8(¢))/L,(@)] <1
for all e @.
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Lemma 2. The probability measure @, minimizes Ey[L,(Q) In L, (Q)] if and only if

Eo[L,(Q) In L,(Q:)] < Eo[L.(3(¢)) In L. (€)]
for all g P.
Lemma 3. The probability measure @, minimizes E [$L2(Q)] if and only if

E[L3(@:)] < Eo[L,(3(8)) L.(Q,)]
for all e P.

The proof of each lemma is the same. Fix two probability measures &, and #,. For pe[0, 1],
PP, + (1 —p) P, is also a probability measure. If L, : = L (%) and L,: = L (%,), then L (pZ?, +
(1=p)Py) = pLi+(1—p) Ly:= L,. We now minimize the respective functions of (B 1) with
respect to the family of measures pZ, + (1 — p) &,.

For example, let

V(p) = Ey[L,InL,)].
Then, dashes indicating derivatives with respect to p,
V'(p) = Eo[(Ly—Ly)In L]
V(p) = Eo[(Li— Ly)*/L,].

Hence V(p) is convex in p and it is minimized at p = 1 if and only if

and

V(1) = E[(Ly— Ly) In L] < 0.

Now any probability measure &, that minimizes Ej[L,(Q)In L, (Q)] must minimize V (p) for all
p and all possible &,. This gives the criterion of lemma 2. The proofs of the other lemmas are
similar.

Returning now to the normal example, let « = +1 and let @, : = §(¢,) for all 7€[0, 1]. The
criterion of lemma 2 is used to show that @, minimizes E[L,(Q) In L (Q)] for the null (6, 8(¢,)).

Here
_{ 00 _1_ J 2 L 1
InL(Q) = gzl -5 % (=00 57,

The criterion of the lemma is equivalent to showing that E[Iln L,(Q); 6 +7, ] is minimized at
¢ = @y, which is clearly true. Use of % (1,8(¢,)) gives the result Z+(0,|0(d,)) = J/(263), as
required.

AprenDIxX C. PROOFS FOR §4.2

LemMMA A (PROOF). Any regular upper (lower) one-dimensional subfamily («, @, x ... x@,)
for null A, = I1(0,, @;,) has a likelihood ratio
Lw = 11 L,

i=1
where

LiT = f(Xu 00 +arT, er) /f(Xw 00, Qio)’

corresponding to a one-dimensional subfamily for null A,y = (0, @) in A*. The regularity
required by (A 5) assures that

o2 o2 n
'ﬁ(AOIOQ Ql. X X Qn) = '5,".'5 EO[ ~In L(Tn)] _10+ = a—,r'é EEO [ —In Lir] o+ = i§1 j(/\z‘ol &, Q':,)
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THEOREM B (PROOF). For any regular family the Cauchy-Schwarz inequality gives
vary[T'] varg[LP] > [k(0y + at) —h(6,)]2.
Dividing through by 72 = a?r? and letting 7 0+ gives
vary [T]S (Agla, Qo % .. x @) > [4'(65)]

by regularity condition (A 7).
CoroLLARY C (PROOF). If vary 7" = oo, there is nothing to show. Otherwise, let % (e, @y % ...

x @,,.) be a local family of alternatives to null TI(6,, 8(¢;)). If the likelihood ratios are L{™, then,

by the definition of local,
vary[L{™M] < oo,

for 7 sufficiently small. By the Cauchy—Schwarz inequality, if E, is expectation under alternative

7, then
EN|T|] = EJ[| T|LY] < E[T?] E[L{]? < 0.

Hence, T is absolutely integrable under A,. It follows by Fubini’s theorem that E,[ 7] = 0,+ ar.
Hence, any estimator 7" unbiased (globally) in II(6, ¢,) is locally unbiased in I1(6, @;) at null
I1(0q, 8(P40)), and so theorem B gives the necessary bound.

AprPENDIX D. PROOF OF THEOREM OF §5.3

The proof consists of minor modifications of Bahadur (1964). Under the regularity conditions
(A 1) to (A 4), the regular one-dimensional family % (a, Q) satisfies Bahadur’s regularity con-
ditions (i)—(iv). Moreover, a careful reading of his proofs for lemmas 1 and 2 and for proposition 1
reveal that nowhere does he use his requirement that the null §, be in the interior of @; all that is
needed is a one-sided approach to the null by the alternatives. (The Taylor expansion in his
equation (13) holds on the boundary by repeated applications of the mean value theorem.)
Moreover, proposition 1 only requires the estimator 7, to be asymptotically normal at the null.
This said, we may restate his proposition 1 in the notation of this paper.)

ProrosiTiON. Let 7, = n~% and let £ («, Q) be a regular family. If {7} is c.a.n. for 6 at A, =
(69, @), with asymptotic variance v, and if

liminf P[T, < Oy+a7,; A, ] < §, (D1)
n—>

then
v > I (A 2, Q).

The theorem of § 5.3 is now an elementary corollary. The fact that 7}, is L.u.a.m.u. gives
sup{|P[T, < Oy+ar;A,]—3}|:7€[0,6)}>0 as n->o0,

which implies (D 1). The conclusion of the proposition can then be applied to arbitrary regular
families to give the theorem.
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AprPENDIX E. PROOF OF LEMMA OF §7.3

From equation (7.3.1) it follows that for § > 0 (sufficiently small) there exists an integer 7,(8)
such that

xmqﬁu&wwxﬁu&wwﬂ<ﬁu&%x
=1 i=1 i=1

almost surely A, for n > ny(8). It follows by differentiability of [, that the equation
2 (X;0) =0

almost surely has a solution in (6, — &, 0, + &) for n > n,(8). Since this solution must be 4, and since
8 is arbitrarily small, 8, - 6, almost surely 2A,.

ArprENDIX F. THE L.U.AM.U. PROPERTY OF THE P.M.L.E.
The following additional conditions are sufficient to ensure that the p.m.l.e. §,, is Lu.a.m.u.

(1) For each local family % (a, @) there exists an integer #, and a real number €, > 0such that

n A
for n > n, the equation ¥ /,(X;; 0) = 0 has a single root 8,,, almost surely A, for all 7€ [0, ¢,].
i=1

(2) Eo[l,(X;0)]* and Ey[{,(X; 0)]° are finite in a neighbourhood of ¢, and continuous at 6.

Proor. Fix local family #(a, Q) and let 6, = 0, + ar. Assumption (1) ensures that X/, (X;; 0) is
negative for @ > 0, and positive for 6 < J,,, almost surely A, for all 7€ [0,¢]. Hence it suffices to
show that there exists an ¢’ > 0 such that

sup{|P,[Zl,(X;;0,) < 0] —%|:7€[0,e']}>0 as n—>c0.

The stronger result that X/, (X;; 0,) is locally uniformly asymptotically normal under A, will be
shown instead.

Because of the i.i.d. nature of the summation, asymptotic normality follows from finite variance
which itself follows from assumption (2) and the definition of a local family:

E,[1(X;0,)]* < E§[1;(X;0,)]* E3[L2] < oo.

The uniform approach to normality is then guaranteed by the Berry—Esseen theorem (see, for
example, Feller 1967, p. 542) if it is demonstrated that

E7[|,(X;0,)|]?

B [1;(X;0,)° T

is uniformly bounded for 7€[0, ¢"]. The numerator is bounded above by assumption (2):
ER[|1,(X; 0,11 < Eo[1(X;0,)1°E[ L]

Lebesgue’s extended dominated convergence theorem (see, for example, Rao 1973, p. 136),
applied to the relation

‘ 0 < ((p(X;0,))°L, < $(4,(X; 0.))* + L7,
assures that the denominator of (F 1) is continuous in 7 at 7 = 0*. So, since the limit is .#3(0,,
Q,) > 0, the denominator is bounded away from zero for 7€[0,¢'], some ¢’ > 0. Thus (F 1) is
uniformly bounded for 7€[0,€'], as required.
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